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ABSTRACT 

The comparison of the means of two treatments or populations when more than one variable 
is measured may be done using Hotelling's T2 statistic. In many real world situations the data 
obtained are dichotomous, and the assumption of multivariate normality upon which Hotelling's 
T2 is based is no longer valid. In this paper, an approximate Hotelling T2 test is proposed for 
bivariate dichotomous data and empirically evaluated in terms of Type I error rate. It is shown 
that the approximation does a good job of controlling the Type I error rate for a range of 
bivariate parameters even for relatively small sample sizes. 
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1. Introduction 

It is very common to have multivariate data in which the individual variates are 
dichotomous, i.e. take one of just two possible values, 0 or 1. Multivariate models with binary 
response have found extensive application in reliability and biostatistics. In meat sciences this 
type of data may arise in comparing the contamination of beef carcasses under two methods of 
decontamination where bivariate responses are presence or absence of two types of bacteria on 
the carcasses. 

If observations are selected randomly from multivariate normal populations, a common 
multivariate statistic for comparing two populations is Hotelling T2 [Anderson (1984)]. A 
permutation test that is based on the computation of the t-statistic for each of the response 
variables is also appropriate for multivariate data. Blair et. AI. [1994] showed that one sided 
multivariate tests can enjoy substantial power advantages over Hotelling T2 test under certain 
conditions. 

In a two group experiment with binary responses, the central problem is to describe the 
joint distribution of a set of binary variables. The oldest approach to multivariate binary data is to 
define indices of association following essentially Yule. Goodman and Kruskal [1954, 1959, 
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1963] have reviewed and extended this work. Recently, Bilder [2000] has used a Pearson like 
chi-square statistic to analyze multi-response contingency tables. 
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In this paper, an adaptation of Hotelling T2 is proposed for comparison of two 
populations having bivariate dichotomous responses. An empirical study is done to examine the 
type I error rate. 

2. Bivariate Dichotomous Data 

We consider the problem of comparing two treatments in experiments in which bivariate 
dichotomous response variables are measured on each experimental unit. For example, suppose 
an entomologist wishes to compare the effectiveness of a broad spectrum insecticide in 
controlling two pests affecting a particular plant. Suppose one set of experimental plants in a 
completely random design is treated with the insecticide and the other set acts as control. 

For group I, the response would be XI and X 2 

{
I when pestl is present on a plant 

Xl = o otherwise 

{
I when pest2 is present on a plant 

X 2 = o otherwise 

F or group II, the response would be Y I and Y 2 

~= {
I when pestl is present on a plant 

o otherwise 

{
I when pest2 is present on a plant 

Y2 = o otherwise 

In matrix notation we can represent the data as 

XI X2 YI Y2 

0 1 0 0 

1 0 1 0 

X= 1 1 and y= 0 1 

0 0 1 1 

0 1 0 1 

The hypotheses to be tested are Ho: Px = P y, Ha: Px 7:- Py where Px = (Px Px) and 
J 2 

(1) 

Py = (p v p v ) are vectors of expected proportions or population proportions of pest 1 and pest 2 
_ J .2 

present on plants. 
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3. Permutation Test 

A two sample permutation test is carried out by randomly assigning experimental units or 
subjects to one of two treatments. All possible two-sample data sets are obtained by permuting m 

(m+n] + n observations among two groups. There are m such data sets. 

The permutation principle states that the permutation distribution is an appropriate reference 
distribution for determining the p-value of a test and deciding whether or not a test is statistically 
significant. One may extend permutation tests to the multivariate setting. Here one permutes 
observed vectors among the groups, keeping the vectors intact in doing the permutations. See 
Higgins [2003] Chapter 6 for more details. 

A multivariate permutation test for this problem may be carried out using PROC 
MUL TTEST in SAS®. The permutation test is based on the computation of a t-statistic for each 
of the response variables. Let tj denote the two sample t-statistic for testing the difference 
between the means of treatments 1 and 2 on response variable j, j = 1,2, .... k. The statistic 
computed in MULTTEST is maximum of the absolute values of the t-statistics 

The permutation p-value for the jth variate is the proportion of the permutation distribution of 
Tmaxabs greater than or equal to the observed value of Itjl. Because the permutation distribution is 
used as the reference distribution, the statistic may be applied to dichotomous data as well as 
continuous data without concern about the violation of the normality assumption associated with 
the parametric test. One may also use bootstrap sampling, or sampling with replacement from the 
set of multivariate vectors, instead of permutation sampling. Bilder [2000] considered bootstrap 
sampling for this problem. One may also carry out a one-sided multivariate permutation test 
although this is not implemented in SAS®. 

4. Hotelling T2 Approximation 

Suppose we have n observations from population 1 and m observations from population 
2. There are k response variables for each population. The response matrices are represented by 

Yll ... Ylk 

Y2I ... Y2k 

x= y= 

YIIII ... Ymk 

We assume that responses are distributed as multivariate normal with mean and covariance as 
shown below. 
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Y = [~~ ...... Y,J ~ MVN (f-ly, L.y ) , where Y j = [yu ........ yimt , i = 1, ..... , m. 

Hotelling's T2 statistic, which assumes that L. x = L.y = L., is given by 

2 mn (- -)' ( )-1 (- -) T =-- X -Y Spooled X -Y , 
n+m 

(2) 

where Spooled = (n-1)SX + (~-1)Sy and Sx, Syare sample variance-covariance matrices of X 
n+m-

m+n-k-1 
and Y respectively. Under the null hypothesis F = T2 has an F -distribution with 

(n+m-2)k 
degrees of freedom k and m+n-k-1. 
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Now suppose the data are dichotomous. Because of the Central Limit Theorem, the 
analysis of univariate dichotomous data may be done with normal approximations for large 
samples. The approximations are generally good even for moderate sample sizes if the 
population proportions are not too close to 0 or 1. The question of interest here is the possible 
use of multivariate normal methods to analyze bivariate dichotomous data. 

The suggested approach is to apply (2) directly to the dichotomous data just as ifO's and 
1 's are quantitative observations. The expected values are given by 

where pxJ = P(XJ =1), px2 = P(X2 =1), pyJ = P(YJ = 1), Py2 = P( Y2 =1). The covariance between 
X, and X2 is given by 

Cov(XJ, X2) = E(X,X2) - E(XI)E(X2) 
= Pxl2 - Pxl Px2. 

Similarly the covariance between YI and Y 2 is given by 

Cov(YI, Y2) = E(YI Y2) - E(YI)E(Y2) 
= Pyl2 - Pyl Py2. 

Note that Px12 is the probability that both Xl and X2 are 1, and similarly Py12 is the probability that 
both Y, and Y2 are 1. The variance-covariance matrix for X can be written as 

(3) 

The variance-covariance matrix for Y can be written as 
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The sample statistics are given by 

" ;=1 " ;=1 d " ;=1 " ;=1 P xl=--'Px2=-- an P yl=--,Py2=--' 
n n m m 

11 m 

I XnXi2 I YnYi2 
where PX l2 =-'C.i=::.!.I __ and Py l2 =-'C.i=",-I __ 

n m 

Kansas State University 

(4) 

(5) 

The unbiased estimates of the variance-covariance matrices for the two groups are 
n ~ m ~ 

S x = --Lx andSy = --Lv· Under the assumption that Lx = Ly = L, we use the usual pooled 
n-l m-l . 

estimate Spooled to estimate L and then apply the formula for f2 defined in (2) to the dichotomous 
data. 
A modification of this procedure is to use the estimated variance-covariance matrix defined by 

~ ~ 

~ (n-1)Lx +(m-1)Lv 
L = .. 

n+m-2 
(6) 

The test statistic for testing the hypothesis Ho: Px = Py is given by 

~ 2 mn (~ ~)' ~ -I ( ~ ~) T =-- ~-Py L ~-Py' 
m+n 

(7) 

where ~ = [PXI PX2] and ~v = [Pn PY2]. As with the use of f2 we assume that the distribution of 

F = m + n - 2 -1 f2 approximately follows an F -distribution with numerator degrees of freedom 
(n+m-2)2 

2 and denominator degrees of freedom n + m - 3. This test statistic and the test statistic in (2) 
applied directly to dichotomous data are evaluated with respect to probability of type 1 error rate. 
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5. Simulation 

In order to study the performance of these tests, random samples were generated from 
bivariate Bernoulli distributions. The two dichotomous variables have to be correlated for 
bivariate analysis to be relevant. We used SAS® for our simulation study. We generated two 
Bernoulli distributions for the two variables. The first variable XI was generated from 
Bernoulli(p I)' The second variable X2 was generated conditional on X j from a Bernoulli(p2) 
where P2 is obtained as follows: 

P(X2=JI Xj=O) = PIO, P(X2=JI Xj=J) = P11 

P(X2=J) = P(X2=JI Xj=O)P(XI=O) + P(X2=JI Xj=J) P(Xj=J) 

= P 10 (l-p 1) + P 11P j 
= P2 

The conditional probabilities P 10 and P 11 were chosen so that Xl and X 2 have a specified 
correlation p. The same procedure was repeated for the other population. The variance­
covariance matrix was the same for both cases under Ho. 
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Random samples of size n and m were drawn from population1 and population2 
respectively for each correlation value. For this study n and m were equal. The different values of 
nand m were 10,20,30, and 40. The two statistics given in (2) and (7) were computed. Each 
combination OfPl,P2, n, m, and p was repeated 5000 times and the test statistics were computed 
at each repetition. The type 1 error rate is taken to be the relative frequency with which the test 
statistics given by (2) and (7) exceeded the critical value in 5000 replications. The critical value 
is computed at 5% significance level. 

6. Conclusions 

Probability of Type 1 errors is given in Table 1. The correlation coefficient p ranges from 
.25 to .90. The sample size varies from 10 to 40. There are two values of type 1 error rates- one 
using the test statistic given in (2) and the other by using the test statistic given in (7). 

The statistic r defined in (2) does a good job of controlling the Type 1 error rate for the 
cases considered. The elements of the variance-covariance matrix Spooled in (2) are slightly larger 

than those of i: for (7). Because the statistics involve the inverse of the variance-covariance 

matrix, it follows that r is smaller than i 2, and so the Type 1 error rate of i2 will be higher as 
is evident from the table. However, the difference is not particularly large for samples of larger 
size. 

We thought that the correlation might be a determining factor in terms of Type 1 error 
rate being closer to its nominal value. The simulation results indicate that it is not so for the cases 
considered. Table1 shows that the change in correlation coefficient p from .25 to .90 does not 
affect the probability of Type 1 error for either of the test statistics. The marginal probabilities 
pj and P2 range from .4 to .9. Thus, in terms of controlling Type I error, the use of Hotelling's T2 
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appears to be an acceptable methodology for analyzing bivariate, and by logical extension, 
multivariate dichotomous data. 

7. Future Investigation 

The proposed test for bivariate dichotomous data was studied in terms of controlling the 
Type I error rate. The power of this test deserves further investigation. We are also studying the 
power of this test when the variance-covariance matrices are not pooled. 
With respect to the confidence interval, we can make a confidence ellipsoid as in the usual 
multivariate case. Confidence region for difference of proportions would be an ellipsoid centered 
at the observed proportion difference, whose axes are determined by the eigenvalues and 
eigenvectors of Spooled. However, further investigation of its properties is needed. 

Table 1 

PI Pll PIO P2 p n m r A) 
T-

.60 .95 .05 .59 .90 10 10 .050 .071 
20 20 .054 .062 
30 30 .056 .061 
40 40 .056 .058 

.50 .90 .05 .475 .85 10 10 .048 .067 
20 20 .050 .058 
30 30 .047 .051 
40 40 .052 .054 

.60 .90 .15 .60 .70 10 10 .044 .065 
20 20 .048 .054 

30 30 .056 .060 
40 40 .052 .056 

.90 .90 .45 .90 .50 10 10 .044 .066 
20 20 .056 .063 
30 30 .057 .057 
40 40 .048 .050 

.40 .75 .50 .60 .25 10 10 .044 .067 
20 20 .048 .058 
30 30 .057 .063 
40 40 .056 .059 

Summary 

In this paper, we consider the problem of comparing two treatments in experiments in 
which bivariate dichotomous response variables are measured on each experimental unit. A 
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multivariate permutation test for this problem may be carried out using PROC MUL TTEST in 
SAS®. The question of interest here is the possible use of multivariate normal methods to 
analyze bivariate dichotomous data. An approximate Hotelling T2 test is proposed for bivariate 
dichotomous data and empirically evaluated in terms of Type I error rate. It is shown that the 
approximation does a good job of controlling the Type I error rate for a range of bivariate 
parameters even for relatively small sample sizes. Thus, in terms of controlling Type I error, the 
use of Hotelling's T2 appears to be an acceptable methodology for analyzing dichotomous data. 
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